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Abstract

Abstract

As robots have to do more and more human tasks they need more human like
moving capabilities. In this thesis a biologically inspired joint operating with
tendons is build. The controlling for such joints is examined on this example. It is
tried to control the joint with learning algorithms like goal babbling and Neuronal
Nets.

Joints operated by tendons have some advantages over motors directly in the
joint. For example if the joint has not enough space as in a finger. Or if the elastic
properties of the joint can protect the motor from the forces if the robot falls down.
On the other side controlling a joint operated by tendons is much harder then a
simple servo controlled by a PID-Controller.

Zusammenfassung

Da Roboter immer menschlichere Aufgaben wahrnehmen sollen brauchen sie auch
zunehmend menschliche Bewegungsfhigkeiten. Daher wurde in dieser Arbeit ein
beispielhaftes Gelenk entworfen welches wie das biologische Vorbild mit Sehenen
angetrieben wird. Für dieses Gelenk wurden dann verschiedene Steuererungsal-
gorithmen ausprobiert, unter anderem die lernenden Verfahren Goal Babling und
Neuronale Netze.

Sehnen getriebene Gelenke sind in einigen Bereichen besser als die Motoren
direkt in das Gelenk zu bauen, zum Beispiel wenn wenig Platz ist, wie in den
Fingern, oder wenn durch die elastizitt der Sehne die Hardware geschtzt werden
kann, indem schwere Strze nicht direkt auf den Motor gehen. Dar ist die Steuerung
eines Gelenkes welches ber Sehnen angesteuert wird koplizierter als ein einfacher
Servo mit einem PID Controller.
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Chapter 1

Introduction

Robots take more and more part in our world. They already have a great part
in the industries, doing a lot of repetitive tasks. In this field specialized robots
can exceed humans. There are a lot of fields which need much more human like
features if robots should take part in this work too. For example multi purpose
robots for the rescue area, which need to interact with the human world in a robust
manner. One of the needed features are hand like grippers for interacting with the
world.

The rescue robots in the Robocup Rescue League today are crawler-mounted
vehicles with some simple gripper. They share a problem with robots from the
@Home League: Their gripper is too big, so objects they have to get must stand
sufficiently apart. This is often not given in a human environment, neither in
rescue situations nor at home. One of the causes why the grippers are so big is
that the motors for controlling them are directly inside of them.

A solution of this problem is to move the actuators out of the gripper into the
arm moving it via tendons. But with the nonlinear characteristics of tendons the
controlling of the grippers gets more complicated.

The human body has quite a few joints which have more than one dimension,
like the hip or the shoulder. In most of the actual robots they are build out of
three motors which are assembled as close together as it is possible, but the axis
of the joints are not at the same spot as it would be with a real ball joint.

Another big problem for the humanoid robots is falling. By now humanoid
robots have their motors directly in the joints. If they are falling, the kinetic
forces act directly on the gear of the motor. These forces are strong enough to
destroy the gears, which leads to failing motors and expensive repairs. Possible
countermeasures are to add springs on the motor horn, [7] add a flexible coupling,
ore use elastic tendons. Each of these countermeasures has some disadvantages on
their own. I want to research tendons because it is the most human like form.

As the robots get more and more degrees of freedom, it gets more complicated
to do the inverse kinematics. Elastic parts would be harmful on the mostly static
kinematic calculation.
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Chapter 1. Introduction

1.1 Related Work

As described above, the Robocup team WF-Wulfs has published a paper about
adding springs to a joint [7]. They have implemented an additional gearbox on top
of the motor which has a spring and a positional sensor inside. They have tried
them in the competitions in 2014 but they do not seem to be ready yet as they do
not write about them any more [4].

The problem of calibrating the kinematic model of the robot is discussed by
Kastner et al. [13]. They used the camera and some visual calibration pads
mounted beneath the feed. They state that the results are not perfect, but usable
and better than without calibration.

There are some robots using tendons for some parts, mostly in the hands for
example the iCup Robot has a nine DOF hand, operated via tendons [5]. Some
joints are operated by a single tendon in cooperation with a return spring, the
other ones have two tendons, but also only one motor. The iCup uses tendons in
some other joints [10]. The tendons are steel cables with mostly one motor for two
tendons.

The shadow hand [3] is operated by air muscles and tendons. Air muscles have
the problem that they are limited to a maximum of 30 percent contraction. They
can exert forces up to 70 kg at 4 bar. The problem with this system is that it
needs a big pressured air supply, and in compression to motors the muscles are
relatively slow. The actual position of the muscle is not as easy measured as in a
traditional servo.

1.2 Thesis Goals

The goal of this thesis is to find a simple way to control joints moved by tendons
with more than one motor and tendon per joint. I want to investigate if it is
possible to build a self-learning application, which can operate the joint. Maybe
the developed concept is able to regain precise control if the tendons length has
changed after a repair or a heavy workload.
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Chapter 2

Basics

In this chapter the basics used later in the approach are described.

2.1 Humanoid Robots

This is a model for a ball
joint, operated by four
tendons.

Figure 2.2: A model for
a ball joint

Most humanoid robots have a relatively low degree of
freedom (DoF), so there are many movements they can
not do. A typical humanoid robot has between 19 and
24 DoF. A human has 244 DoF in 230 joints controlled
by 630 muscles [15]. For an idea about the major hu-
manoid joints see figure 2.1.

2.1.1 Problems with Motors in Joints

Nowadays in humanoid robots motors and joints are ba-
sically the same thing [4] [2]. This is mechanically sim-
pler, but have a few drawbacks, for example the large
forces on the gear if the robot falls down. In multi di-
mensional joints like the hip there is also the problem
that the three motors can not be on the same spot so
the three movement axis are often slightly off, and not
at the same point as in a ball joint. A ball joint can not
be directly operated by motors, there have to be some
tendons or bars.

A two or three dimensional joint can be done with
motors, but the motors are reaching out of the object,
often creating a problem because of collisions with other parts of the robot(see
figure 2.4). In humanoid robots it is often not possible to do this in the shoulders,
making the arm movement more difficult.

3



Chapter 2. Basics

This figure shows a simplification of the joints in the human body. The 34 major
joints are shown, the hands and feet are not shown in this image, so for gripping

or advanced walking some more joints are needed. [Picture Source1]

Figure 2.1: Major joints in the human body

2.2 Kinematic and Inverse Kinematic

For most robotic control tasks the kinematic or inverse kinematic is used. The
so called forward kinematic is used to calculate the actual position for a specific
part of the robot, for example calculating the position of a hand or the position of
the camera in the head. The inverse kinematic is used for calculate the necessary
motor values to reach a desired position.

2.3 Motor Babbling

Motor babbling is a method to let a robotic arm explore and learn its workspace
by itself [12]. For that purpose the algorithm tries randomly chosen values for
all servos, and saves the correlation of the servo angles and the external survived
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2.4. Goal Babbling

end effector position. After a lot of time the algorithm will have tried all possible
servo angles and will know its workspace and in which way to reach a position.

Figure 2.3: Example for bootstrapping the inverse kinematic for a 20 DoF arm
with online goal babbling [9]

Figure 2.4: Typical mo-
tor positions for a hip
joint

The first problem here is that, with a huge dimensional
robotic arm, it takes a very big number of attempts,
and therefore a lot of time to do training. The second
problem is that it is possible to learn many sets of servo
angles for the same end position, and the algorithm has
to make a decision which is the best for using later on.

2.4 Goal Babbling

According to Hofstein [14] children try to reach for an
object, even if they fail numerous times. This leads to
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Chapter 2. Basics

a rethinking of the simple motor babbling to overcome the limitations. Aiming for
a goal instant of all possible motor angles like with motor babbling can reduce the
dimension of the learning problem, for example from a ten degree of freedom arm
to a two dimensional goal. In [8] Rolf et al. present a approach to learn the inverse
kinematic with goal babbling. This approach was refined with online learning by
the same authors in [9]. In this paper they showed that it is possible to learn the
inverse kinematic in a reasonable time (see figure 2.3). In 2013 Rolf had refined
the goal babbling to work with unknown ranges [11]. This is done while evaluating
the desired movement against the actual movement. If the two differ too much, it
is assumed that the range of the robotic arm is reached in this direction (see figure
2.5).

Figure 2.5: Detecting the boundaries of the workspace [11]

2.5 Neuronal Networks

Figure 2.6: Model of a biological
neuron
The dendrites are the input,
the axiom the output Source:
wikipedia.org

One technology for learning algorithms in ar-
tificial intelligence are Artificial Neuronal Net-
works (ANN). They are biologically inspired by
the neurons in the human brain (see figure 2.6).

A biological neuron as explained by Hebb [6]
has numerous electrical inputs called dendrites.
If the accumulated input reaches a certain level,
the cell is emitting an electrical impulse via the
axon.

2.5.1 Single Layer Perceptron

The simplest form of a neuronal net is the Sin-
gle Layer Perceptron (see figure 2.7), in which
some input neurons are connected to some out-
put neurons.

6



2.5. Neuronal Networks

The value of each neuron is determined with the following formula:

oi = f

(
N∑
j=1

wjxj

)
(2.1)

The output value oi of a neuron is the sum of the weighted outputs from the
neurons which are connected from the previous layer, wj are the weights of the
edges, xj the output of the previous neuron. We use a function f for determin-
ing the activation of the neuron, so it is possible to implement a threshold as
in the biological neuron. If we have more than one output neuron oi we do the
calculation for each of them separately. It is possible to use a simple step function

Figure 2.7: Single layer percep-
tron

f(n) =

{
1 if n ≥ 0

−1 if n < 0
(2.2)

The learning is done by adjusting the
weights of the edges wi. After each learning
step the error produced by the actual weights
δi is determined (see 2.3). There ti is the de-
sired output of the neuron. The result is multi-
plied with the learning rate α and the output of
the previous neuron xi, and added to the actual
weights. (2.4)

δi = ti − oi (2.3)

∆wi = wi + α δi xi (2.4)

With a Single Layer Perceptron it is possible to model the logical AND or OR
functions, but a SLP cannot model linear inseparable functions like XOR.

2.5.2 Multi Layer Perceptron

Multi Layer Perceptrons (MLP) can in contrast to SLPs handle linearly separable
functions. A MLP has at least one hidden layer between the input and output (see
figure 2.8) The neurons in a MLP are calculated like in the SLP, but calculating
each layer from input to output separately. The output of the neurons is calculated
with formula 2.5 and 2.6.

oj = f(netj) (2.5)

netj =
n∑

i=1

xiwij. (2.6)

7



Chapter 2. Basics

Figure 2.8: MLP

In a MLP the learning is done by
back propagation. For the output
layer the error can be calculated di-
rectly, for the hidden layers it is
more complicated because the er-
ror of the neuron is not easily de-
termined. Because the back propa-
gation uses the derivative the acti-
vation function has to be differen-
tiable. Usually sigmoid functions
like 2.7 or 2.8 are used, the former
ranging from -1 to 1, the later from
0 to 1.

f(n) = tanh(n) (2.7)

f(n) =
1

1 + e−n
(2.8)

For the update of the weights a gradient descent (see 2.9) is used. wij is the
weight of the edge from neuron i to neuron j. E is the error function 2.10

∆wij(n) = −α∂E(n)

∂vj(n)
yi(n) = αδjxi (2.9)

E =
1

2

n∑
i=1

(ti − oi)
2 (2.10)

All together we get the formula (2.11) for the error of each neuron.

δj =

{
f ′(netj)(tj − oj) if j is a output neuron

f ′(netj)
∑

k δkwjk if j is a hidden neuron
(2.11)
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2.6. Tendons

2.6 Tendons

It is visible that for each motor there are
two joints. The Two left Motors are not
jet connected.

Figure 2.9: The Inmove Hand

Some of todays robots already have ten-
dons, but often they use only one mo-
tor for the two tendons from one joint.
Humans generally have one muscle for
each tendon. Using one motor is done
because with one motor the control-
ling gets easier, and it needs less space.
The downside is that after a lengthen-
ing of the tendons there is some play
in the motor movement, which most of
the time is unwanted as it permits the
movement of the effector without motor
movement.

The human tendon muscle combina-
tion is a little elastic, so what not every
fall leads to serious injuries. In robotics
elastic materials are mostly avoided be-
cause the controlling with them is much
more complicated, and often not yet
possible.

9



Chapter 2. Basics

10



Chapter 3

Hardware and Software

3.1 Motors and Sensors

Figure 3.1: MX-28 Servo

The testing model (see 3.2) uses the Dynamixel MX-
28 servo motors from Robotis. They are digitally
controllable over a simple protocol on a TTL bus
system. The motors have a hall effect sensor and
a magnet on the joint axis as a position encoder.
The sensor has a resolution of 4096 positions on
360 degree, resulting in a resolution of 0.088 de-
grees. They understand a variety of commands, for
example switch off the torque.

A MX-28 motor with switched off torque is used
as a position sensor in the joint because it is sim-
ple to get the current position from the motor over
the framework (see 3.3) from Hamburg Bit-Bots,
a Robocup team playing in the humanoid soccer
league. For other positional sensors it would be nec-
essary to implement the whole communication with
the sensor.

Experience from the Hamburg Bit-Bots shows that the MX-28 motors have
some play if they are switched to hold a position. If the motor is aged it can go
up to several degrees. This positional offset can be read from the internal position
sensor, but the motor is not able to hold the position that exact.

3.2 Testing Model

For the practical tests a simple model of a one dimensional joint with two tendons
was build. The model is 3D printed, with some metal parts which are originally
taken from the Darwin OP robot, but it would be possible to print them too. For
the communication with the motors the USB2Dynamixel connector was used. It
connects the motor bus from the Dynamixel to the USB port of any computer.

11



Chapter 3. Hardware and Software

Plaited fishing line is used as tendons, because they are relatively robust not
so elastic and simple to handle. The fishing line have a diameter from 0.8 mm and
resists a force of 900 N.

Figure 3.2: The testing model

3.2.1 Lengthening of the Tendons

Plaited fishing line have a relative low lengthening in comparison to other fishing
lines. Measurements with the used fishing line have shown that it lengthen ca. 1.3%
under 15 kg weight. A 30 cm part with a Bowline knot at one end lengthening to
32 cm, meaning a over all lengthening of 6%. The bowline was used in the model
to fasten the fishing line to the forearm.

3.3 RoboCup Framework of the Hamburg Bit-

Bots

The motor control software was written in Python using parts of the above men-
tioned Hamburg Bit-Bots framework [1] for the communication with the hardware
over the serial bus. Hamburg Bit-Bots uses the Darwin-OP robot, which uses the
MX-28 servos. Therefore the software from them already have the support for
controlling MX-28 servos.

The software makes it easy to read and write the registers of the motors. For
example it is not necessary to write the two bytes of the goal position separately.
Instead the framework lets you write the goal position in degrees. In case of an
error a appropriate Python exception is thrown, so error handling is quite easy to
do.

12



3.3. RoboCup Framework of the Hamburg Bit-Bots

3.3.1 Extensions to the Software

A simple wrapper for the hardware was written, so that the controlling algorithms
can set positions to the tendons and read back the resulting angle from the joint
in a simple matter. There are some classes for the different controlling and test
algorithms.

13



Chapter 3. Hardware and Software
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Chapter 4

Approach

4.1 Implementation

All following approaches have in common that they have two motor commands as
output and get the actual angle of the test joint back. The commands to a motor
could either be a angle or the command to disable, enable or set the speed. At
the beginning of a test an initializing sequence is done, including to set the joint
on the left end of the reachable moment space and tightening the tendons.

4.2 Creating a Control Table

If the torque of one motor is switched off and pulled with the other motor, it is
simple to record the positions of the switched off motor and the joint. At the end
of the reachable angle the roles of the motors are changed, letting the other motor
pull the former active motor (see figure 4.1). After some iterations the average
over the recorded positions are calculated. A mapping from a joint angle to the
corresponding two motor angles as seen in figure 4.2 is the result. Each motor
position was taken one hundred times, the active motor there moved in one degree
steps to minimize the recording time.

4.2.1 Limitations

This method can get a control table fast, but there are some drawbacks with it.
At first the resolution is limited (see figure 4.3) because the pulled motor and the
attached tendon do not have the same drag at all positions.

The peak in the error values on the left side of the control spectrum are most
likely an effect of the slightly elastic plastic used in the model and the unequal
length changes in the edge of the reachable room.

Over the time in use, the tendon and especially the knots lengthen (see chapter
3.2.1) and the table gets more and more inaccurate. To compensate this it would
be necessary to record the tables again.

15



Chapter 4. Approach

The graph shows the raw data of the servos and the joint. The segment where a
motor line is straight corresponds to the time the motor pulled the tendon, in the
other time the torque was switched off.

Figure 4.1: Part of the motor to joint angle data

This graph shows the angles the motors have to head for to archive a desired joint
angle. The data was generated with an average over ten cycles.

Figure 4.2: The joint to motor angle table

16



4.3. Goal babbling

This graph shows the error on different tries to reach the recorded points from the
control table. The shown value is the absolute error in degrees.

Figure 4.3: The joint error table

If the joint has to operate in an up down direction at the time the tables are
recorded, there is an additional problem: The moving part is falling down if the
holding tendon is set to no torque (see figure 4.4).

4.3 Goal babbling

As goal babbling is an approach with no initial knowledge about the robot itself
(see chapter 2.4), it has to discover the possible movements by itself. It gets the
space it has to explore, but in this case there are many motor positions which are
not possible. In the original goal babbling there are static limits on each motor so
that the robot does not collide with itself.

In this case however the limits change dynamically with each motor command,
and even worse a movement of one motor can require a certain minimal movement
from the other motor, or the possible movements would be greatly limited.

An attempt for a fix of the problems is to switch one motor off, like in the
previous attempt, and let one motor pull the other. This approach has the problem
that it has to determine which motor to switch of. This decision is not simple
because it is possible that the algorithm decide to pull on both tendons at the
same time.

Another problem with this fix is that the goal babbling would not learn to
control both motors at the same time. It will record the pulled position like in the
control table, or even worse, if not taken special care of in the implementation the

17



Chapter 4. Approach

In this graph the raw positions for the motors are plotted against the joint angle.
Each position was reached ten times. The right servo was the upper servo in this
experiment.

Figure 4.4: Data recording of the controllable if the joint is vertical

position originally wanted by the algorithm.
An other idea is to represent both motors as one joint in the goal babbling

algorithm, but as the motors do not act linearly to each other it is not simple
possible to create a mapping.

4.4 MLP

Trying to bootstrap a MLP (see 2.5.2) with no prior knowledge has very similar
problems to goal babbling. The untrained MLP just tries different motor positions,
this again leads to motors which both try to pull on the tendons. It would be
possible to train the MLP if the force in the tendons is measured the whole time,
and then used as an error value for the MLP training. If the force is going to get
too high the actual test would be aborted and a large error would be reported back
to the MLP. This was not tested because sufficient force sensors are quite expensive
and would need hardware modifications as well as a lot of new controlling software
to communicate with the sensors.

4.5 Pre Trained MLP

As bootstrapping the MLP does not work on the current hardware without risking
serious damage, the MLP was trained on the existing data from the first approach
(see chapter 4.2). After the initial training the MLP was used to control the

18



4.6. General Limitations

model. Then the MLP was switched in online learning mode, by continuously
back propagating the reached and given values. As an overall error value all errors
from the training set were summed to get an easy to read overall error value. This
value should be minimized.

4.5.1 Initial Training and Setup

The MLP was trained on the data from the first approach (see 4.2). For this the
joint angle was taken as an input and each motor angle as an separate output.
The formula (2.7) was used as activation function. The input and output values
of the MLP are normalized from the original range of −180 to 180 to a range from
−1 to 1. After some evaluation (see figure 4.5) as there are not much differences
between the hidden neuron count five hidden neurons and 20000 iterations initial
training where chosen. The learning rate α was set to 0.1. The learning rate was
chosen because 0.3 is beginning to oscillate.

A test with the pre trained MLP lead to positional errors which are a little
more distributed, but it seam to be at largely similar to the table approach from
chapter 4.2 (see figure 4.6).

4.5.2 Online Learning

The trained MLP can control the model with nearly the same precision as the
control table approach. For the online learning the MLP was used to calculate the
necessary motor values for each joint angle. After the positions were reached, it
was tried to reach the exact joint value switching one of the motors off and moving
the other slowly. The difference between the positions from the MLP and the
corrected position was then used as training error. This lead to slowly improving
the errors.

4.5.3 Change of the Model

For testing a change in the tendon length in a controlled manner an offset were put
in one of the motors. There one degree offset roughly translate to a one millimeter
longer tendon. Offsets below five degrees were compensated in under one-hundred
movements for each position.

I only tested the lengthen of a tendon because if they shorten the motors would
work against each other without the MLP being able to notice it in any way. This
would not be good for the hardware.

4.6 General Limitations

It is necessary to use small steps in giving new positions to the motors. A jump from
one end of the controllable space to the other one will command the motors to reach
the indented position as fast as possible. Within that time there is the possibility
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Chapter 4. Approach

This graph shows the error with a learning rate α of 0.1 for MLPs with 5, 10, 15,
or 20 neurons in the hidden layer

This graph shows the error with a learning rate α of 0.3 for MLPs with 5, 10, 15,
or 20 neurons in the hidden layer

Figure 4.5: Comparison of different MLP configurations

that both motors together put too much tension on the tendon or loosening it too
much. Both outcomes are not good, the former is bad for the motors themselves,
because of the forces, the later is not so good because of the loose joint.
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4.6. General Limitations

The MLP was used without online learning on the real hardware. it had to reach
random chosen positions

Figure 4.6: The errors of the pre trained MLP
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Chapter 5

Conclusion and Discussion

5.1 Discussion

5.1.1 Inaccurate Control Table

With the used approach for generating the control table there was a relatively big
error in some regions for reaching the position. For some applications this might
be enough accuracy, for most robotic arms it would not be sufficient. Fingers for
example do not have to be this accurate, because at gripping it is mostly more
necessary to know the force with which the object is hold.

After some time the MLP had reduced the inaccuracy so the setup can be
used for more applications. This approach will need some time at the beginning
for each joint to learn, but after some time the accuracy is good enough for most
applications. The problem will be that each joint have do be trained separately,
most likely after each other to avoid collisions with other parts of the robot.

5.1.2 Bootstrapping a MLP

As stated in 4.4 it would probably be possible to bootstrap a MLP without prior
knowledge if additional sensors are integrated in the model. But the count of
training iterations in 4.5 is a good hint about the necessary training time. One
movement from one side to the other and back again needs round about 10 seconds.
With the recorded training data at least 5000 iterations were necessary for reaching
a reasonable error rate. This would mean a training time of about 14 hours, not
calculated in that the hardware can not operate this long at once. Also the training
would probably need more iterations, because in the beginning the higher output
angles are not reached.

5.1.3 Use in a Real Arm

In a robotic arm it would be possible to use tendons controlled with the MLP
from this thesis, but if a highly precise positioning is required, for example for
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drilling holes, the positions have to be controlled externally or the accuracy of the
controlling have to be a lot better than in the experiments.

One could say that the human is not capable of putting his joints in exact
angles and control the arm mostly over visual feedback when gripping something.
Dynamic controlling, like humans mostly do, would be possible if the controller
just works with commands like five degrees more in the elbow joint. Then the
main task of the MLP or control table would be to move both tendons in a way
that they interact smoothly. This task could be done from the MLP, the control
table have some points there the accuracy of the joints to each other is not this
good, but this would be manually fixable if it is necessary.

5.1.4 Use in general Robots

If elastic tendons are used in the legs the walking algorithms have to be adapted,
because at the moment they control they needs to control the positions very exact,
as the whole kinematic and centre of mass needs to be computed. But in general
there is nothing especially against tendons in the legs. The control algorithms has
to get more accurate, and the walking has to deal with more inaccuracy.

5.2 Conclusion

The pre trained MLPs with online learning can be used in some environments, but
for the most use cases it would need to include force sensors in the tendons for
more accuracy and easier training. Goal babbling is a good approach for learning
the reachable environment, when the joints are simply controlled by angles. It
would be possible to use goal babbling for bootstrapping the kinematic of an arm
using the MLP driven joints.

This thesis showed that it is not this simple to control joints driven by elastic
tendons with hight accuracy. As discussed above for some use cases the reached
accuracy is enough but there are a lot use cases where more accuracy is needed.
Another drawback for the learning algorithms is the high learning time on real
hardware.

5.3 Further work

A huge improvement for controlling a joint with tendons would be to include
force sensors within the tendon. With force sensors it would be possible to make
sure that the motors are not working against each other. It would be possible to
generate more accurate control tables as it is possible to tighten the tendon which
was not controlled in this experiments.

To further improve the shock resistance when the robot is falling down, more
elastic tendons could be used, or springs could be included in the tendon. This
would make the controlling even more complicated, but together with the force
sensors the robot could tense the joint for more exact positioning or let it loose.
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5.3. Further work

Another area of work is to expand this thesis to a multidimensional joint.
Therefore it would be necessary to build a sensor which can be integrated in a
multidimensional joint. The simple solution to take a motor as sensor, as done
here, is not possible then. Another problem would be that the space of possible
positions for all tendons is much larger, and the exploration and learning would
cost a lot more time. Therefore it would be necessary to try to speed up the data
recording and learning.

For the human hand there is the problem that the tendons for the fingers go
over the wrist, the muscles are in the upper arm. This means that each movement
in the wrist has to be countered in for the fingers, creating depending movements
and again a higher dimension in the controlling problem.
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